博客
关于我
每日算法系列【LeetCode 122】买卖股票的最佳时机 II
阅读量:699 次
发布时间:2019-03-21

本文共 912 字,大约阅读时间需要 3 分钟。

买卖股票的最佳时机问题——最大利润计算

问题描述

给定一个数组,该数组表示每天的股票价格,目标是通过有限的买卖交易操作,最大化总利润。允许进行多次买卖交易,但必须在新交易开始之前完成前一次交易。也就是说,必须先卖出股票后再购买新的股票。

解决思路

这个问题可以通过寻找股票价格的涨幅来解决。具体来说,我们需要找出所有连续交易日中,股票价格上升的部分,并将这些利润累加起来。这样可以保证在每次价格上涨的情况下,都能获取到相应的利润。

具体步骤如下:

  • 初始化一个变量 res 来记录最终的利润。
  • 遍历股票价格数组,从第二个元素开始。
  • 对于每个元素 prices[i],计算它相对于前一个元素 prices[i-1] 的价格差值。
  • 如果价格差值为正,则将其加到 res 中。
  • 最终返回 res,即为最大利润。
  • 代码实现

    class Solution:    def maxProfit(self, prices: List[int]) -> int:        n, res = len(prices), 0        for i in range(1, n):            diff = prices[i] - prices[i-1]            if diff > 0:                res += diff        return res

    代码解释

  • 初始化变量 n 为数组长度,res 为0,用于记录利润。
  • 遍历数组,从索引1开始到索引n-1结束。
  • 计算当前元素与前一个元素的差值。
  • 如果差值大于0,说明有利润,添加到 res 中。
  • 返回 res,表示最大利润。
  • 扩展讨论

    这个解决方案的核心在于利用股票价格的上涨部分来计算利润。每次找到一个价格上涨,就能立即从中获利。虽然看起来简单,但这种方法的正确性是经过验证的。

    基于这个思路,算法的时间复杂度为 O(n),非常高效,适合处理大规模数据。此外,这种方法避免了复杂的交易逻辑,确保了一定能够找到最优解。

    如果需要进一步的优化,可以考虑使用更多的交易策略,但在本题中,问题允许进行尽可能多的交易,因此上述方法已经是最优解了。

    转载地址:http://ekaez.baihongyu.com/

    你可能感兴趣的文章
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 时事和见解【2023】
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>